Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

نویسندگان

  • Hua Qin
  • Philip C. Brookes
  • Jianming Xu
چکیده

We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1-L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P < 0.05). The dissipation rates of tri-, tetrachlorinated biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P < 0.01). Real-time quantitative PCR results indicated that the Rhodococcus-like bphC gene was 2-3 orders of magnitude more than that of Pseudomonas-like bphC gene, and was found responded positively to AMF. Phylogenetic analyses of the 16S rDNA sequenced by the Illumina Miseq sequencing platform indicated that AMF hyphae altered bacterial community compositions. The phylum Betaproteobacteria and Actinobacteria were dominated in the soil, while Burkholderiales and Actinomycetales were dominated at the order level. Taxa from the Comamonadaceae responded positively to AMF and trichlorinated biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attachmentofdi¡erent soil bacteria toarbuscular mycorrhizal fungal extraradical hyphae isdeterminedbyhyphal vitalityand fungal species

Attachment of certain bacteria to living arbuscular mycorrhizal fungal extraradical hyphae may be an important prerequisite for interactions between these microorganisms, with implications for nutrient supply and plant health. The attachment of five different strains of gfp-tagged soil bacteria (Paenibacillus brasilensis PB177 (pnf8), Bacillus cereus VA1 (pnf8), Pseudomonas fluorescens SBW25<gf...

متن کامل

Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria.

Many physicochemical and biotic aspects of the soil environment determine the community composition of bacteria. In this study, we examined the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition of bacterial communities after long-term (7-8 years) enrichment culture in the presence of a plant host. We showed that the phylogeny of arbuscular mycorrhiza...

متن کامل

Interactions between Soil Bacteria and Arbuscular Mycorrhizal Fungi

Toljander, J.F. 2006. Interactions between Soil Bacteria and Arbuscular Mycorrhizal Fungi. Doctoral dissertation. ISSN 1652-6880, ISBN 91-576-7088-9 The extraradical mycelium (ERM) of mycorrhizal fungi constitutes an important pathway for the translocation of energy-rich photoassimilates from plant to soil. Because of the large surface of the mycelium, and its provision of carbon, the ERM poten...

متن کامل

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem.

• We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. • We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment wit...

متن کامل

Programming good relations--development of the arbuscular mycorrhizal symbiosis.

The majority of plants live in symbiotic associations with fungi or bacteria that improve their nutrition. Critical steps in a symbiosis are mutual recognition and subsequently the establishment of an intimate association, which involves the penetration of plant tissues and, in many cases, the invasion of individual host cells by the microbial symbiont. Recent advances revealed that in the arbu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016